Nutrition and Renal Disease

Teaching handout

Aims of Session

• Understand the importance of nutrition in renal disease
• Understand the rationale for dietary modification
• Raise awareness of the dietitian's role in the management of renal disease

Background of Renal Dietetic Service

4 Senior Dietitians working in Renal Medicine

- Cover Edinburgh and West Lothian
 o Inpatients at RIE:
 High Dependency Unit, Renal Ward and Transplant Unit
 o Dialysis Units (RIE, WGH, SJH)
 o Low Clearance Clinics (RIE, WGH, SJH)
 o Home Dialysis/ PD Clinics (RIE, WGH, SJH)

Dietary Intervention in Renal Disease

Can include both:

- Dietary education
 o Sodium
 o Protein
 o Energy
 o Phosphate
 o Potassium
 o Fluid
 o Post Transplant

- Nutrition Support
 o Incidence of malnutrition
 o Causes
 o Assessment
 o Management

• Intervention is individualised to each patient's needs
• Can change according to stage of renal disease
 (i.e.: pre-dialysis, conservative management, haemodialysis, peritoneal dialysis or post transplant)
1. Sodium

- Plays vital role in regulation of fluid balance and blood pressure
- Restriction aids compliance in fluid restricted patients
- Guidelines for general population= max 6g NaCl per day
- An estimated 75% of salt intake comes from processed foods
- All renal patients advised on a No Added Salt (NAS) diet: 80-100mmols/day.
 o Avoid adding salt at the table
 o Use small amount in cooking or none at all
 o Reduce intake of salty foods (e.g., cheese, smoked food, savoury snacks)
 o Limit intake of packet, processed & convenience foods
 o Avoid salt replacements (e.g. Lo salt)
 o Encourage use of pepper, herbs and spices as alternative flavourings

2. Protein

- Essential for the growth and repair of body tissues
- Protein-rich foods include:
 o Meat, chicken, fish, eggs, cheese, yoghurts, nuts, pulses, meat substitutes (Note: some high protein foods contain high levels of phosphate and potassium)
- Recommendation for protein varies according to stage of renal disease/ type of renal replacement therapy
 o Pre dialysis/ Conservative Management
 →Controlled protein intake (0.8-1g/kg/IBW)
 ▪ Helps to reduce phosphate load
 ▪ Prevents acidosis
 ▪ May reduce ureamic symptoms
 ▪ But must maintain nutritional status
 ▪ Use of low protein diets is controversial
 o Haemodialysis
 →Moderate protein requirements (1-1.2g/kg/IBW)
 ▪ Haemodialysis is a catabolic process
 ▪ Aim to replace protein lost during dialysis (~4g per session)
 o Peritoneal Dialysis
 →High protein requirements (1.1-1.5g/kg/IBW)
 ▪ Average peritoneal losses of 5-15g protein per day
 ▪ Increased losses in peritonitis
3. Energy

- Adequate energy intake essential to optimise nutritional status

 o Pre dialysis/ Conservative Management
 → High energy requirements (30-35 kcal/kg/IBW)
 ▪ Can have raised metabolic rate

 o Haemodialysis
 → High-energy requirements (30-35 kcal/kg/IBW)
 ▪ Catabolic process raises metabolic rate

 o Peritoneal Dialysis
 → Moderate energy requirements (25-30/kg/IBW)
 ▪ Account for calories absorbed from dialysis fluid (can be 70-270kcal/day)

4. Phosphate

- Phosphate control essential for prevention and management of renal bone disease, arterial stiffening and vascular calcification

- Phosphate in the diet generally associated with intake of protein:
 o Meat, fish, chicken, eggs, yoghurts, cheese, milk

- Typical UK intakes of phosphate:
 - Men: 47mmol/day
 - Women: 36mmol/day

- When GFR deteriorates to 25-30ml/min, phosphate retention can occur.

- Level of restriction depends on treatment mode, residual renal function, dietary intake, and biochemistry. (Phosphate not very well dialysed)

- Aim to maintain serum phosphate <1.8mmol/l.

- Control can be achieved via combination of:
 1) Low phosphate diet
 ▪ Limit high phosphate foods (Cheese, yoghurt, eggs, nuts, milk, oily fish)
 ▪ May have to restrict their phosphate intake to approx 30mmol/day.
 ▪ However, must maintain adequate protein intake

 2) Phosphate binding medication:
 ▪ Works in the stomach
 ▪ Binds the phosphate in foods
 ▪ Should not be taken without food as will have no benefit
 ▪ Examples:
 • Calcichew, Phosex (Calcium containing)
 • Renegel, Alucap, Fosrenol (Non-calcium containing)
5. Potassium
- Average intakes in the UK:
 - Men 84mmol/day
 - Women 66mmol/day
- Restriction often required in renal patients for prevention and management of hyperkalaemia.
- Level of restriction based on treatment mode, dietary intake and biochemistry.
 - Aim approx 1mmol per kg/IBW (e.g. 5ft 8in male ~68mmol)
 - Often no restriction required in peritoneal dialysis

- MUST RULE OUT NON-DIETARY CAUSES
 - Acidosis, ACE inhibitors, NSAID, K+ supplements, K+ sparing diuretics, salt substitute, uncontrolled diabetes

- High Potassium Foods

<table>
<thead>
<tr>
<th>Milk</th>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potatoes (boiling reduces K+ content)</td>
<td>Coffee</td>
</tr>
<tr>
<td>Potato crisps (Maize/corn better)</td>
<td>Milk Chocolate</td>
</tr>
<tr>
<td>Fruit (limit all fruit, fruit juice, dried fruit)</td>
<td>Toffee, liquorice</td>
</tr>
<tr>
<td>Vegetables (boiling reduces K+ content)</td>
<td>Nuts</td>
</tr>
<tr>
<td></td>
<td>Salt substitutes</td>
</tr>
<tr>
<td></td>
<td>Wine, beer, cider</td>
</tr>
<tr>
<td></td>
<td>(spirits low in K+)</td>
</tr>
</tbody>
</table>

6. Fluid
- Restriction may be needed to prevent excessive fluid retention, depending on urine output.
- Must count foods with a high fluid content. E.g: soup, ice cream, custard, gravy, jelly.
- Recommendations:
 - Pre-dialysis
 - Ensure adequate fluid intake (2-2.5L per day)
 - May require restriction when nearing ESRF
 - Haemodialysis
 - Varies depending on residual renal function
 - Usually 500mls + PDUO
 - Intradialytic weight gains of >2kg indicate excessive fluid intakes
 - Peritoneal Dialysis
 - Varies depending on residual renal function and ultra filtration
 - Tends to be less restricted than in haemodialysis
- Aim to give practical tips: using smaller cups, sucking ice-cubes
7. **Dietary Intervention Post Renal Transplantation**

- Ensure adequate nutritional intake post-op
- Ensure adequate intake of fluid and electrolytes during polyuric phase
- Dietary restrictions can usually be discontinued
- Education on discharge
 - Healthy eating
 - Food safety, drug interactions
 - Adequate calcium for bone preservation
- Potential to develop obesity, hyperlipideamia and steroid induced diabetes.

Malnutrition

- **40-50% of HD and PD patients are malnourished**
- Affects morbidity and mortality rates
- Very difficult to reverse once evident

Causes:

- Increased hospital admissions
- Infections
- Inadequate dialysis/ acidosis
- High nutritional requirement
- Limited fluid intake
- Intra-abdominal pressure in CAPD
- Social/ lifestyle
- Concurrent illness
- Uremia
- Drugs
- Anaemia
- Restrictive diets
- Depression
- Economic factors

Assessment:

- Consider all factors that relate to nutritional status
 - Diet history and any changes in dietary intake
 - Weight history
 - Anthropometric measurements
 - Underlying medical condition & treatment
 - Biochemistry
 - GI symptoms
 - Social and psychological factors

Management:

- Oral Diet
- Oral diet + extra snacks
- Oral diet, extra snacks + supplements
- Oral diet + supplementary NG/ PEG feeding
- Exclusive NG/ PEG feeding
- TPN

Must also optimise medical management (dialysis adequacy, acidosis, infection)